
 

 

 

Automation Systems 

Digital Control Systems (DCS) 

for MSST  

at VGU in HCMC 

 

 

SS 2011 

 

 

 

 

Prof. Dr.-Ing. Hans-Werner Dorschner 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Inhalt |1 

 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

Content 
 

Content ________________________________________________________________________________ 1 

1.  Sequential Control _________________________________________________________________ 4 

1.1  Status Description __________________________________________________________________ 4 

1.2  Status Graph ______________________________________________________________________ 4 

1.3  Implementation of the State Graph _____________________________________________________ 6 

1.4  Programming of Step Actions _________________________________________________________ 7 

1.5  Programming or Transition Conditions__________________________________________________ 8 

1.6  State Graph with Loops_____________________________________________________________ 14 



  Inhalt |2 

 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

Copyright 

 

 

This script was written by Prof. Dr.-Ing. Hans-Werner Dorschner, HS Karlsruhe – Uni-
versity of Applied Sciences. It is only for internal use for the semester student of MSST 
at VGU in HCMC. 

It is expressly forbidden to document on paper or electronically to third parties or use 
information for training purposes or other commercial or noncommercial purposes. 
Violators will be prosecuted with all legal means necessary. 

 
 
Prof. Dr.-Ing. H.-W. Dorschner 



  Inhalt |3 

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

 

 

 

 

 

 

 

 

Part II 

 

Sequential Control 



Sequential Control                                         Status Description           4/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

1. Sequential Control 
Sequential control problems are controls with single steps that have to be processed in a fixed 
sequential manner. 
The stepping from one step to the next depends on so called transition conditions that have to 
be fulfilled by the process. 
There is always a definite relationship between each step in the control program and the tech-
nological process under control. This connection can be time based or function based. There-
fore we distinguish between  
 

time based and process based sequential controls. 
 
 
Time based sequential controls use as transition conditions timer, counter etc. whereas the 
process based sequential controls do derive their transition conditions from process conditions 
like pressures, temperatures flow rates or a. o. 
 
 

1.1 Status Description 

The methods for designing logic control can also be used for sequential control. But it can 
become very difficult to respect all dependences or interlocks if we have more complex prob-
lems. Therefore a special language or design method was developed which introduces a status 
combined with a transition. If the transition condition it fulfilled the controller can move to 
the next step of his program and execute the respective commands. 
 

 

1.2 Status Graph 

Every controller has a special status at a definite 
point in time. If the controller has a memory then 
this status will also contain the information of the 
past. 
The symbolic representation of those steps (status) is 
shown in Fig.  1-1. We see two steps (status) and the 
sign for the conditions (transition conditions) to step 
from status 1 (step 1) to status 2 (step 2). 
This means the step 2 will only be reached, if the 
controller is in step 1 and the transition conditions 
for step 2 are fulfilled. 
 
 
 
In the respective step some commands will be exe-
cuted to control the process (Fig. 1-2). 
 

Fig.  1-1: Graph with 2 status steps

Transition condition for step 2 

Step 1 

Step 2 

1 

2 



Sequential Control                                         Status Graph           5/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

Depending on the processed to be controlled there 
can be parallel branches in the graph or jumps to 
special steps (Fig. 1-3).  

 

In case of parallel branches they have to be inter-
locked because the controller has to have a definite 
status. 

 

In case of jumps we see the jump target step in a 
circle. In Fig. 1-3 we have two parallel branches. 

 

 

 

 

From step 2 the controller can get either to step 3 
or 5. These alternatives must be interlocked. From 
step 4 the controller gets to step 5 and from step 6 
the controller will jump – if the transition condi-
tions are fulfilled – to step 3. 

 

 

 

 

 

Transition conditions for Sn 

conditions  

Sn commands 

Sn+1 

Fig. 1-2: Commands in step n  

Fig. 1-3: Graph with parallel branches



Sequential Control                                         Implementation of the State Graph           6/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

1.3 Implementation of the State Graph 

The state graph can be implemented in different 
way. 
The straight forward way would be to declare one 
flip-flop for each state (Fig. 1-4). 
 
The transition conditions for step 3 are led to the set 
input of the flip-flop of step/state 3. Here is the step 
2 included in the conditions because the controller 
can get to step 3 only if he is in the 2 in this special 
example.  
The following state 4 will reset the flip-flop of state 
3.  
 
Each output of the respective flip-flop represents one 
definite step or state. If the controller is in state 4, 
then the state 3 flip-flop will be reset. 
 
At power-up of the controller the initial status of all 
states has to be rest. Then we get a defined initial 
status of the controller. The reset can either be done 
manually (f.e. in an OB 100) or will be done auto-
matically with power-up depending on the CPU 
type. 
  
As a summary we can note down the rules to implement a state graph with flip-flop: 
 
 
 
 
 
 
 
 
 
 
 

 

 

2

3

4

& 
E 1 

E 2 

Fig. 1-4: state definition by flip-flops

 Every state of the state graph will be assigned a RS-flip-flop. 

 The set input (S) of the flip-flop of the respective state which is a marker 

(memory flag) will be built by the AND combination of the preceding state and 

the individual transition conditions of the actual state. 

 For a defined initial status all states must be reset. 

 In case of branches the following states must be interlocked. 

 The outputs to the process will be built as a logical function of the respective 

states (markers) according to the controller tasks. 



Sequential Control                                         Programming of Step Actions           7/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

1.4 Programming of Step Actions 

I every step (state Si) there will be an action processed that influences the process under con-
trol (Fig. 1-5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An action is an operation (command) which consists of an operand and a code for the opera-
tion. As operations in a state signals can be set or reset: 
 

 S  Set output signal 

 R  Reset output signal 

 N  Non holding: Operand=1 as long as the controller is in the respective state. 

 D  Delay: Operand will be set to 1 after a programmed time when controller is in 

the respective stat and will be reset when controller leaves the state. 

 

Besides these elementary commands there are also call-commands possible for example call-
ing a function or a function block. 

Examples will follow. 

 

 

 

Action 1 

Action 2 

Action 3 

Transitions Condition 
Signals, 

Parameters 

S n 

S n+1 

Fig. 1-5: Actions processed at a special state



Sequential Control                                         Programming or Transition Conditions           8/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

1.5 Programming or Transition Conditions 

For the transition conditions we can put logical functions of signals in a conjunctive or dis-
junctive form (Fig. 1-6). 

Besides this also compare functions are possible that compare the time in a state with a prede-
fined value. Herewith time dependent transitions can be defined. 

 

 

  

       

 

 

       

 

 

           

 

       

 

 

In general for conditional time dependent transitions there are three possibilities: 

 

1. Using a timer: The timer gets started delayed by the defined timer word when the con-
troller enters the state (S1). This is done in a stored manner that means that the time 
must be rest some when (Fig. 1-7). 

With the command SO the timer will be rest (TR timer reset), if the controller leaves 
the state.  

 

 

 

 

 

 

 

 

 

AND 

NAND 

Compare 

 

 

Fig. 1-6: Transition conditions programming

Fig. 1-7: Conditional transition time dependent



Sequential Control                                         Programming or Transition Conditions           9/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

Screw Conveyor 

Conveyor 

Weighbridge 

2. Using a comparing command the controller compares the time he stays in the current 
state compared to the programmed one (Fig. 1-8). 

 

 

 

 

 

 

 

 

 

3. Using a marker (memory flag). The memory flag is delayed by a predefined time val-
ue (Fig. 1-9). 

 

 

 

 

 

 

 

 

 

For clarification we will look to the following example: 

Example: Filling plant 

A screw conveyor transports a granulated good to a belt conveyor. The weighbridge will send 
a signal (S3) if the wagon is full. 
 
 
 
 

 

 

 

 

 

 

 

Fig. 1-8: Direct comparison with a defined time interval 

Fig. 1-9: Conditional transition using a memory flag (marker) 

Fig. 1-10:  Filling station 



Sequential Control                                         Programming or Transition Conditions           10/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

The filling process will be started by the switch S0 if a wagon is in his position (S2). Then the 
belt will be running for 3 seconds to prevent material congestion. 
The filling process will be stopped if the sensor S3 indicates that the wagon is full or not in 
his position any more (S2) or the stop switch (S1) was operated. 
In this case the belt conveyor still runs for an additional 5 seconds in order to empty the belt. 
The next filling process will be started by pressing the switch S0. 
 
We get the following allocation table: 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the described control task we get the following state graph (Fig. 1-11): 

 

 

 

 

 

 

 

Input Variables Device Tag Logical Allocation 

START switch S0 I  0.0 operated S0=1 

STOP switch S1 I  0.1 operated S1=0 

Sensor Ramp S2 I  0.2 If wagon at ramp S2=1 

Sensor Weighbridge S3 I  0.3 If wagon full S3=1 

Initialization Impulse RI M 40.4   

Output Variables 
 

Motor Conveyor Belt 

(Contactor Motor M1) 

K1 Q  0.0 on K1=1 

Motor Screw Conveyor 

( Contactor Motor M2) 

K2 Q  0.1 on K2=1 

Timer 1 T1  T1=3s  

Timer 2 T2  T2=5s  



Sequential Control                                         Programming or Transition Conditions           11/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise: 

1. Derive the PLC program for a SIMATIC S7 PLC in GRAPH. 

2. Derive the STL program for the state graph. 

If the markers are nonremanent it will be sufficient to start step 0 with an initialization im-
pulse. 
 
 
 

 

S 0 Start Switch 

S 2 Wagon in Position 

M 2 

&

M 1 

M 3 

T1 over 

K1 Motor Conveyor Belt 

T1 = 3 s 

K1 Motor Conveyor Belt 

K 2 Motor Screw Conveyor 

S 3 Wagon full 

S 2 Wagon not in position 

S1 Stop Switch 

M 4 

1<= 

K 1 Motor Conveyor Belt 

T 2 = 5 s 

T2 over 

M 1 

Fig. 1-11: State graph of the filling station 



Sequential Control                                         Programming or Transition Conditions           12/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

It is important to remember that you cannot a STL or FBD directly from a 
state Graph (GRAPH in SIMATIC) 

These SW packages are completely separately and cannot be converted into 
each other. 

 
The following example demonstrates the necessity to interlock states. 
 

Example: Traffic Light 

A construction area is secured by a traffic light on the road 

If the plant is powered both lights will show red. 

An arriving car is detected by the respective initiator. Then after 10 s the corresponding traffic 
light will change to green. The green phase will last at minimum 20 s before both lights will 
change to 10 s on request of the other initiator which indicates oncoming traffic. Then the 
oncoming traffic will have a green phase of 20 s minimum. 
By operating the OFF switch the plant will be shut down after finishing the actual green phase 
(Fig. 1-12). 
  

 

 

 

 

 

 

 

 

We get the following allocation table: 

 

Input Variables Device Tag  Logical Allocation 

On/OFF S0 I0.0 ON S0=1 

Initiator 1 I1 I0.1 operated I1=1 

Initiator 2 I2 I0.2 operated I2=1 

Initialization Impulse RI M40.4   

Output Variable  

Lamp 1 green  H1 A0.0 shines H1=1 

Lamp 2 green  H2 A0.1 shines H2=1 

Lamp 1 red  H3 A0.2 shines H3=1 

Lamp 2 red H4 A0.3 shines H4=1 

S n Construction Area 

Plant 
On 
Off 

Fig. 1-12: Traffic lights at a construction area of a road 



Sequential Control                                         Programming or Transition Conditions           13/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

According to the description the plant can be in different states. 
Because of the branch (S2 -> S3/S4) the following steps have to be interlocked. This is also 
true for the subsequent states 4 and 7 (Fig. 1-13). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise:  
 

1. Derive the PLC program for a SIMATIC S7 PLC in GRAPH (use all three different 
time based transition conditions) 

2. Derive the STL program for the state graph. 

 
Note: 
 

The interlock of the states 3 and 6 is implemented automatically because of the 
two different branches. 
If both transition conditions are fulfilled at the same time than this branch will be 
executed that has the highest priority that means the lowest transition number (can 
be assigned manually). 

 

S1 

S2 

S3 

S4 

S5 S8 

S6 

S7 

  

S1 S6 S1 S3 

Fig. 1-13: State graph of the traffic light



Sequential Control                                         State Graph with Loops           14/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

1.6 State Graph with Loops 

If we find in a state graph a state which is in 
a set and reset position (like S3 and S4 in 
Fig. 1-14) then we call it a loop which a 
controller may not escape from. 
Therefore the following rules have to be 
followed: 
 
Erscheint in einem Zustandsgraphen eine 
Zustand sowohl in der Setz- wie in der 
Rücksetzbedingung eines zweiten Zustan-
des, dann können Schleifen auftreten, aus 
denen die Steuerung nicht mehr ausbrechen 
kann, wenn man nicht folgenden Regel be-
achtet: 
 

 

 

 

 

In Fig. 1-14 state 3 sets state 4 together with E4 but rests it as a following state. That means 
state 3 appears in the set and reset condition of state 4. The same is true for state 4. He acts as 
a set and reset -condition for state 3. But a state (signal) cannot act as set and reset input to a 
state (flip-flop) at the same time. Therefore we have to follow the signal wiring according to  

 
 

 

 

 

 

 

 

 
In order to clarify the loop problematic we review an old example with the filling station. 

 

Example: Filling station  

Three reservoirs with level detectors S1, S3 and S5 (Full) and S2, S4 and S6 (Empty) can be 
emptied in an arbitrary order (Fig. 1-16). If any container is empty he will be filled. But the 
controller has to prevent that more than one container will be filled at a time. If the sensor is 
signaling that the container is full the filling process will be stopped.  The reservoirs should be 

S 4 

S 3 

S 2 

S 5 

S3

E 2 

E 3 

E 4 

E 5 
E 13

Fig. 1-14: State Graph with loops S3-S4 
In loops the respective states have to 
be rest with the following state and 
the set condition of the following 
state. 

Fig. 1-15: Signal wiring in case of loops



Sequential Control                                         State Graph with Loops           15/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

filled in the same order as they had been emptied. This is a new additional control task with 
respect to the old problem. 
 
 

 

 

 

 

 

 

 

 

 

 

Für die Realisierung der Steuerung wird folgende Zuordnungstabelle zugrunde gelegt: 
 

Input variable Device tag Logical assignment 

Full signal container 1 S1 I0.0 actuated S1=1 
Full signal container 2 S3 I0.2 actuated S2=1 
Full signal container 3 S5 I0.4 actuated S3=1 
Empty signal container 1 S2 I0.1 actuated S4=1 
Empty signal container 2 S4 I0.3 actuated S5=1 
Empty signal container 3 S6 I0.5 actuated S6=1 

Output variable     

Valve container 1 Y1 Q0.0 Valve open Y1=1 
Valve container 2 Y2 Q0.1 Valve open Y2=1 
Valve container 3 Y3 Q0.2 Valve open Y3=1 

 
 
 
 
The control program should be designed with SIMATIC GRAPH. 
 
Fig. 1-17 shows state graph in a non SIMATIC manner. 

 

 

Fig. 1-16: Filling station 



Sequential Control                                         State Graph with Loops           16/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise: Implement the state graph in SIMATIC GRAPH. 
 
From the base state (M1) the graph splits into 3 branches to implement the different filling 
processes for the respective reservoir.  
As a following state the controller can jump to M1 so that the loops (1-2-1), (1-5-1) and (1-8-
1) can occur. This has to be considered when programming the state Graph in FBD or STL! 

M 3 

S 4 

  Y1 
M 4 

S 6

 Y1

M 2 

S 2

   Y 1 

  M 5 

S 1 

 M 8 

S 1

  M 1 

S 1

M 9

S 2

 Y 3
M10

S 4

  Y3

M 8 

S 6 

  Y3 

 M 2

S 5

  M 5

S 5

 M 1 

S 5 

M 6 

S 2 

Y 2
M 7

S 6

Y2

M 5

S 4

Y2

M 2 

S 3 

M 8

S 3

M 1

S 3

 M 1

Fig. 1-17: State graph of the filling process (states are notes as Mi’s)  



Sequential Control                                         State Graph with Loops           17/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

1
 

2 

3 

M 8 

 
 
 

  
 

 
 

 

 

 

 

 

 

 

 

Fig. 1-18: State graph representation of the filling process in FBD, state 1



Sequential Control                                         State Graph with Loops           18/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M 2 

5 

4 

Fig. 1-19: State graph representation of the filling process in FBD, state 2 to 5



Sequential Control                                         State Graph with Loops           19/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 

Fig. 1-20:  State graph representation of the filling process in FBD, state 6 to 9



Sequential Control                                         State Graph with Loops           20/22  

 
 
 
 
 

Automation Systems (Digital Control Systems) 

Prof. Dr.-Ing. Hans-Werner Dorschner 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the points 1) to 6) in the above figures we can notice that the states are reset with their fol-
lowing states and their set conditions. 1) and 4) implements the loops (1-2-1) and (2-1-2),  2) 
the loop (1-5-1) and finally the loop (1-8-1). At 5) the loop (5-1-5) is programmed and at 6) 
the loop (8-1-8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S 5 
Fig. 1-21: State graph representation of the filling process in FBD, state 10 to 13


